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� Abstract
Immunosuppressants are powerful drugs, capable of triggering severe adverse effects.
Hence, there is tremendous interest in replacing them with less-toxic agents. Adoptive
therapy with CD251CD41 T regulatory cells (Tregs) holds promise as an alternative to
immunosuppressants. Tregs have been described as the most potent immunosuppres-
sive cells in the human body. In a number of experimental models, they have been
found to quench autoimmune diseases, maintain allogeneic transplants, and prevent al-
lergic diseases. A major stumbling block in their clinical application is related to Treg
phenotype and the very limited number of these cells in the periphery, not exceeding
1–5% of total CD41 T cells. Recent progress in multicolor flow cytometry and cell sort-
ing as well as cellular immunology has found ways of overcoming these obstacles, and
has opened the doors to the clinical application of Tregs. In the review, we describe
Treg sorting and expansion techniques that have been developed in recent years. In the
experience of our laboratory, as well as some published reports, Treg adoptive therapy
is a promising tool in immunosuppressive therapy, and should be considered for clini-
cal trials. ' 2008 International Society for Advancement of Cytometry
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IMMUNE tolerance can be defined as the lack of an immune response towards a spe-

cific antigen without additional immunosuppression (1). It was first demonstrated in

animal models in the 1950s (2,3). In the 1970s and 1980s, immune tolerance was

linked to the function of lymphocytes called regulatory cells (4–7). The first detailed

description of these cells was in 1995, when CD41CD251 T regulatory cells (Tregs)

were shown to prevent multiple autoimmune diseases in mice (8). Since then,

research regarding the phenotype and activity of Tregs as the master regulators of

immune response has contributed tremendously to our understanding of autoim-

mune and allergic disease mechanisms and immune tolerance. Recently, the utility of

Tregs in adoptive therapy (Tregs administered to the body as a drug) was investi-

gated, and they were found to effectively quench autoimmune and allergic reactions

and increase tolerance after allotransplantations. The development of multicolor flow

cytometry and cell sorting made the expansion of Tregs possible. It is of special im-

portance in human immunology as pure sorting of these cells requires multicolor

staining with sequential gating that involves gates based on differences in the expres-

sion levels of Treg markers. Reasonable purity and viability of sorted Tregs for ex vivo

expansion was achieved only recently, with the last generation of sorting equipment.

With the technology available, and keeping in mind potential problems, we must

now decide whether it is time to move ‘‘from bench to bedside.’’ Are Tregs a safe al-

ternative to routine immunosuppression?

SUPPRESSIVE ACTIVITY OF TREGS

There are two main subsets of Tregs in the body: naturally occurring (nTregs)

and adaptive. Immune response suppression is the hallmark of all Treg types, but the
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targets and the way in which Tregs regulate immune suppres-

sion differ among the subsets. nTregs arise in the thymus,

where they are anergized towards self-antigens. Mature nTregs

emigrate from the thymus into the peripheral lymphoid sys-

tem. Immune responses of any background (infectious, auto-

immune) attract these cells to the site of inflammation, as well

as to the local lymphoid tissue. The suppression mediated by

nTregs occurs mainly as a result of cell-to-cell interactions

with effector cells. Several receptors expressed on nTregs have

been proposed to be active in this process. CTLA-4 (Cytotoxic

T lymphocyte antigen 4, CD152) appears to be the most im-

portant receptor, because engagement of this receptor almost

always triggers the suppressive activity of nTregs towards effec-

tors (9,10). Apoptosis of effectors triggered by competition

with nTregs for IL2 and other c-chain family cytokines, along

with inhibition by nTregs of IL2 production; is also regarded

as an nTreg suppressive activity mechanism (11,12). Interest-

ingly, nTregs secrete both perforin and granzymes, and were

found to be cytotoxic towards effectors, which also suppress

the immune response (13,14). Both CD41 and CD81 effector

T cells can be suppressed by nTregs. In addition, there is

increasing evidence that other subsets, such as NK cells, NKT

cells, monocytes, dendritic cells, and granulocytes, can be also

targets for nTregs (15–18). Importantly, the suppressive activ-

ity of nTregs can be directed not only towards self-reactive

cells, but can also regulate alloresponses and xenoresponses

(16,19,20). This is made possible-at least in part-by the effect

of ‘‘linked suppression,’’ in which Tregs inhibit the immune

response towards a given alloantigen when it is presented to-

gether with previously tolerized antigens (21,22). Another

possible explanation for the broad range of nTregs targets is

that the selection of their TCRs is not limited only to those

TCRs that recognize self antigens. Indeed, the TCR repertoire

of FoxP31 nTregs is similar to that of T effector cells (23,24).

Adaptive Tregs differ from nTregs both in origin and in

mode of action. They arise in the periphery during immune

responses; mainly from naı̈ve CD41 T cells (25). Because they

are generated in this manner, adaptive Tregs are specific to the

antigen that triggered the immune response and they are re-

sponsible for fine tuning of the response (25). Unlike nTregs,

adaptive Tregs suppress the immune response by secreted

cytokines. There are two main groups of adaptive Tregs. Tr1

cells mediate their action via secreted IL10, while Th3 cells

work via secreted TGFb (26,27).

Recently, novel mechanisms of suppression have

emerged. Studies in mice suggest that IL35, a new member of

the IL12 family, is an important factor that imposes immune

tolerance when secreted by FoxP31 Tregs. The production of

IL35 is strongly associated with the expression of FoxP3, and

knockout mice lacking this cytokine have reduced regulatory

abilities and suffer from autoimmune syndromes (28). Addi-

tionally, the addition of IL35 during suppression assays causes

T cells to become anergic and stops their effector activities

(29). The metabolism of extracellular nucleotides could con-

stitute another important pathway of regulation via Tregs.

Extracellular ATP is recognized as a ‘‘natural adjuvant,’’ and

Treg cells have been found to express ectonucleotidase CD39

(nucleoside triphosphate diphosphohydrolase-1) and CD73

(ecto-50nucleotidase), which limit immune activity through

degradation of ATP to AMP and adenosine, respectively. In

addition, the products of these enzymatic reactions bind type

1 adenosine A2A receptors on T effector cells and diminish the

activity of these cells (30,31). Tregs are also capable of storing

suppressive cAMP, which can be then transferred to T effector

cells via gap junctions formed during the immune response

(32).

EX VIVO EXPANSION OF CD251CD41 TREGS

Sorting Strategy
Although much has been learned regarding Tregs in

recent years, there are still many problems that must be over-

come before these cells can be effectively applied in adoptive

therapies. The first problem is their phenotype. Although all

CD251CD41 T cells are recognized as having regulatory func-

tions in mice, only a small proportion of CD41 T cells with

the highest expression of CD25 receptor appears to have regu-

latory properties in humans (33). Because of this, the best

means of sorting human Tregs for further expansion is fluores-

cence-activated cell sorting (FACS). Another possibility is

immunomagnetic isolation; recent reports of the expansion of

immunomagnetically sorted Tregs are promising (34). How-

ever, the commonly held opinion is that the immunomagnetic

technique does not guarantee the sorting of CD25high cells

with reasonable purity. This does not mean that immunomag-

netic isolation should not be used for research on human

Tregs, because cells yielded via this method can be still used

for phenotypic studies or for short-term functional assays. In

addition, recent developments in clinical-grade immunomag-

netic sorting have shown that the technique may yield high

numbers of Treg-enriched CD41 T cells from leukapheresis;

possibly, such Treg-enriched products could be administered

to patients immediately after isolation (35). Many researchers

raise the question of the biological safety of FACS, which is as

non-GMP approved (non-good-manufacturing practice ap-

proved). However, FACS is still a better method than is immu-

nomagnetic sorting, because of the unavoidable contamina-

tion with effectors that makes immunomagnetically enriched

Tregs useless for long-term large-scale expansion. It is because

Tregs are anergic, and their ability to proliferate is limited

(36,37). On the other hand, effectors proliferate far more vig-

orously than do Tregs, and even a trace of contamination with

effectors in the initial sorted population can be expanded to

extremely high numbers. Hence, FACS remains the ‘‘gold

standard’’ in the field.

Some data suggest that seemingly pure CD25high

CD41CD31 T cells collected using FACS may be still contami-

nated with a small proportion of effectors, throwing into

question the specificity of this phenotype (38). The most well-

known marker of Tregs is the transcription factor FoxP3 (39).

However, FoxP3 is intracellular, and the plasma membrane

permeabilization procedure necessary to detect intracellular

content kills the cells. Thus, FoxP3 cannot be used for FACS

selection of viable cells for further expansion. Therefore, addi-
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tional strategies that will improve sorting are necessary. One

simple means of improvement is associated with the expres-

sion of the CD4 receptor during FACS gating. Compared with

CD41 T effectors, Tregs are characterized by lower expression

of CD4 receptors, which may help to establish the most appro-

priate gate during sorting and analysis of these cells during

flow cytometry (40,41). This supports an ‘‘upside down’’ gat-

ing strategy for efficient Treg sorting. Instead of routine iso-

type controls, the sorting gate would be established based on

the fluorescence of around 2% of the brightest CD251 T cells.

This gate would also contain CD4low T cells. If checked, the

expression of FoxP3 in such CD25highCD4lowCD31 T gate

would be close to 100% (Fig. 1). A number of other surface

proteins associated with the Treg function have been proposed

for a panel of markers that can be used to separate pure Tregs

for ex vivo expansion (Table 1). Additionally, some routinely

used drugs have been found to affect the number and func-

tioning of Tregs (Table 2).

An approach that has been pursued only recently is asso-

ciated with the IL7 receptor on T cells (IL7R or CD127). IL7 is

necessary factor for T cell survival and homeostatic prolifera-

tion and the great majority of T cells express the IL7R. Sur-

prisingly, Tregs do not undergo homeostatic expansion on

their own, and they do not express receptor (43,44,96). Hence,

a reliable phenotype for Treg sorting to obtain a pure popula-

tion for further expansion could be CD127-CD25high

CD41 (43) Indeed, such a strategy was found to be optimal in

our lab (Fig. 2).

The main problem of sorting with so many markers is

multicolor staining, which brings with it the problem of com-

pensation. Modern flow cytometers are equipped with soft-

ware that copes efficiently with multicolor compensation.

However, some procedures should be followed, particularly in

the beginning, when the sorting protocol is being developed.

Although many authors suggest using beads, we found that it

is useful to perform compensation using cells that are similar

to those to be sorted. In addition to the fluorochromes being

similar to those used during multicolor sorting, the intensity

of fluorescence also counts toward accurate compensation.

Hence, the protocol is improved when the antibodies for com-

pensation are identical to those used during the actual sorting.

Surprisingly, in contrary to a general view, we found that it is

of special importance that those with low-intensity fluores-

cence should not be replaced with very bright antibodies in

the compensation samples. In our hands, both using the cells

and antibodies corresponding to those used in the actual sort-

ing improved the purity of the sorted population. Particularly

while the protocol is being developed, compensation should

be checked with a ‘‘fluorescence minus one’’ (FMO) control.

Each of the FMO control samples is stained with all but one

antibody used in the final sorting. The missing antibody is dif-

ferent for each FMO control sample, and the appropriate iso-

type control for the omitted antibody is used instead in the

staining cocktail. Thus, during the acquisition, at each time

point, a different single channel contains no positive events.

Comparing percentage results obtained with FMO control

samples, it is possible to estimate the influence of particular

fluorochromes/antibodies on compensation.

Poor viability of sorted cells can be also a problem. Dead

cells are sticky due to the DNA that is expelled from their

nuclei, and they form conglomerates that can clog the instru-

ment capillaries. Dead cells or their aggregates may also con-

taminate sorted subsets if they stick to properly sorted cells.

This problem can be minimized by filtering cell suspensions

or by adding a small amount of deoxyribonuclease to the cells

before sorting, and excluding doublets and 7-AAD-positive

Figure 1. Gating of CD25highCD41 Tregs for sorting. Example showing the procedure for gating human CD251CD41CD31 T cells. Dot plot
on the left was generated from a CD41 T cell gate (entire CD41 T cell gating procedure is shown in Fig. 2). The events in the dot plot are

then gated using the CD25 staining fluorescence intensity. P3 gates top 2%, P4 gates top 5%, P5 gates top 20%, P6 gates top 50%, and P7

gates 100% of CD41 T cells in the dot plot. The gates, from P3 to P7, are overlaid in the histogram on the right. The positive signal area line

delimits the area for positive FoxP3 staining, which was established using the isotype control and FMO control for FoxP3 staining. Gating

based on the brightness of CD25 staining in the dot plot shows that the top 2% of CD251 T cells (P3 gate) are almost entirely positive for

FoxP3expression (see histogram, right). The P3 gate also contains mainly CD4low T cells. Widening of the range of gated events in the dot

plot correlates with a decreasing percentage of FoxP31 cells in subsequent gates, as shown in the histogram on the right. [Color figure can

be viewed in the online issue, which is available at www.interscience.wiley.com.]
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Table 1. Molecules involved in the activity of Tregs that can be used for their identification and sorting.

FUNCTION LITERATURE

CD4 (low) Human Tregs belong to CD41 T cells and express slightly lower number of

CD4 receptors than their effector CD41 T counterparts

(40,41)

CD25 high High affinity receptor for IL2 (IL2Ra), In humans Only CD41 T cells with

high expression of CD25 receptor possess regulatory activity

(33)

CD152 (CTLA-4) Cytotoxic T lymphocyte Antigen-4 (CTLA-4)—the most important surface

receptor mediating cell-to-cell contact inhibition of effector cells in the

immune synapse, fusion proteins CTLA-4Igs are currently used in clinical

trials as immunosuppressive drugs

(42)

CD127 (negative) Receptor for IL7 (IL7R); IL7 is believed to be involved in homeostatic

proliferation of lymphocytes; as Tregs hardly proliferate in a homeostatic

manner, they do not express IL7R

(43,44)

FoxP3 Transcriptional factor (scurfin); currently the most reliable marker of Tregs;

not for use in sorting procedures due to its intracellular expression

(39)

CD62L Selectin that allows lymphocytes trafficking through lymphoid organs; Treg

subset expressing CD62Lis recognized as naive subset and was found to

be more suppressive than CD62L negative Tregs

(45)

CCR7 Marker of naive and central memory T cells, Tregs expressing CCR7 are

recognized as highly suppressive naive subset

(46)

CD45RA Marker of naive lymphocytes; the expression of CD45RA on starting

population of sorted Tregs was revealed to correlate with high suppressive

ability of expanded Tregs

(47)

CD27 Both CD271 and CD27- Tregs are suppressive against naive and effector

cells but CD271Tregs suppress also ongoing T cell responses

(48,49)

CD39 Ectonuclotidase expressed on Tregs; degrades immunostimulatory

extracellular ATP to AMP, which may be subsequently catabolised to

immunosuppressive adenosine

(30)

CD73 Ectonuclotidase expressed on Tregs; a product of the enzymatic activity,

adenosine, suppress T effector cells

(31)

CD45RB (negative) A subset of Treg negative for CD45RB was revealed as crucial in maintaining

tolerance in mucosal surface of digestive tract; accumulation of Tregs

without this marker was also described in peripheral blood Tregs in

human ageing

(50,51)

CD45RC CD45RC is expressed upon activation in some subsets of Tregs, notably on

Tregs associated with mucosa of respiratory tract

(52,53)

CD45RO Marker of memory/activated lymphocytes; the expression of CD45RO

correlates with low suppressive ability of expanded Tregs

(47)

Adhesive molecule: ICAM-1

(CD54); Integrins: LFA-1

(CD11a/CD18), a4b7
(LPAM-1), aEb7 (CD103)
and a4b1 (CD49d/CD49)

High expression of adhesive molecules and integrins gives Tregs the

advantage of strong cell-to-cell interaction with APC and/or effectors and

efficient seeking for inflammation

(10,54,55)

CD86 CD861 Tregs were found during some parasite infections, Blockade of

CD86 receptor on DCs during their cooperation with Tregs increases

suppressive activity of the later ones.

(56,57)

CD95 (Fas) Freshly isolated Tregs express Fas and are more susceptible to Fas-mediated

cell death than effectors; Tregs express also FasL and are capable of

triggering apoptosis of monocytes and B cells via Fas/FasL pathway

(58–60)

CD122 (IL-2Rb) Subunit of IL2 receptor (IL-2Rb ) necessary Tregs for induction of

intracellular expression of FoxP3 during thymic development and at the

periphery

(61)

CD134 (OX-40) Expression of CD134 receptor on the surface of human Tregs abrogates

their suppressive function in some settings (e.g. GvHD)

(62)

CD137 (4-1BB) positive Negative regulator of Treg cell function, the expression of CD137 receptor

on the surface of human Tregs abrogates their suppressive function

(63)
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Table 1. Molecules involved in the activity of Tregs that can be used for their identification and sorting (continued)

FUNCTION LITERATURE

GITR (Glucocorticoid-induced

TNF Receptor)

Negative regulator of Treg cell function, agonist anti-GITR antibodies

abrogate suppressive function of human Tregs

(64)

CD154 (CD40L) negative

negative

Expression of the marker was found to be necessary for induction of

tolerance in some settings; agonist anti-CD154 antibodies are currently

used in clinical trials as immunosuppressive drugs

(65,66)

CD223 (LAG3) Important during Treg-dependent suppression of NK cells via membrane-

bound form TGF-b, not expressed on resting Tregs

(67)

CD28 Necessary for the development and homeostasis of Tregs (68,69)

PDL1 Expression of PDL1 on Tregs is associated with induction of foetomaternal

tolerance

(70)

IL-10 One of the most potent suppressive cytokines – secreted mainly by Tr1 cells

but also Tregs

(27)

TGF-b One of the most potent suppressive cytokines – secreted mainly by Th3 cells

but also Tregs, Membrane-bound form of the cytokine on Tregs is

involved in the suppression of NK cells

(26,67)

Toll-like receptors TLR4, TLR5, TLR8 in humans; signals through those receptors decrease

suppressive abilities of Tregs but stimulate proliferation of Tregs

(71)

neopterin CD41CD251FoxP31 Tregs were found to express high levels of neopterin (72)

CCR4, (to the lesser extent

also CCR8)

Ligands for: CCL22, CCL17, CCL1, and vMIP-I preferentially expressed on

Tregs, the ligands are important for Tregs trafficking through lymphoid

organs and inflammed tissues, e.g. tumour sites

(73,74)

Table 2. Pharmacologic agents known to affect activity of Tregs

FUNCTION LITERATURE

Kalcitriol (Vitamin D3) Increases suppressive abilities of Tregs, Induces oral tolerance via induction

of Th3 cells

(26,75)

Rapamycin Immunosuppressive drug found to select for Tregs in vivo and in vitro (76-78)

Calcineurin inhibitors Group of immunosuppressive drugs that decrease strongly the number of

Tregs in vivo and in vitro and inhibit their function through the

inhibition of IL2

(79,80)

Glucocorticosteroids Treatment with glucocorticosteroids increases the number of Tregs in the

peripheral blood

(81,82)

Anti-CD25 antibodies Treatment with the antibody does not change the number and activity of

Tregs in the periphery

(83)

Alemtuzumab

(anti-CD52 antibody)

Mixed reports, with some that revealed the increase in the level of Tregs and

other which found no changes in the level of Tregs after the treatment

(77, 84,85)

Anti-thymocyte antibodies Treatment with rabbit, but not horse, form of the antibody was found to

increase the level of Tregs

(86,87)

Anti-TNFa antibodies TNFa decreases suppressive abilities of Tregs, anti- TNFa antibodies were

found to suppress via enhanced activity of Tregs

(88,89)

IL2 Abrogates suppressive function of Tregs, necessary during Treg development

and proliferation

(90)

Cyclophosphamide Anticancer drug that reduces the number of Tregs in the body (91)

Fludarabine Anticancer drug that reduces the number of Tregs in the body (92)

Estrogens Estrogens induce increased levels of FoxP31 Tregs, which is related to

immunosuppression in pregnancy as well as in the lutheal phase of

menstrual cycle; The effect of estrogens is associated with upregulation of

PD-1

(93,94)

Retinoic acid Stimulates growth and gut homing of Tregs (95)
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Figure 2. Gating strategy for Treg sorting in the Laboratory of Experimental Transplantology, Medical University of Gda�nsk, Poland. (A)
Cells are presorted with a CD41 T negative immunomagnetic sorting kit (StemCell Technology, Canada), and then sorted by FACS. Lym-

phocytes are identified using a routine scatter gate procedure. First, the doublets (cell conglomerates stuck to specifically stained cells and

responsible for poor sort purity) are eliminated. This is accomplished using laser light signal characteristics (width and height) with two

subsequent gates: the side scatter gate and the forward scatter gate (SSC-W vs. SSC-H and FSC-W vs. FSC-H dot plots, respectively).

Events from the later gate are then transposed to the CD3 vs. CD4 dot plot (P1) to obtain CD41 T cells only. Before the final gating, potential

dead cells and non-CD4 remnants from the P1 gate are excluded using a dump channel (P2 gate). In addition to specific staining, the cells

are stained with 7-AAD (7-amino-actinomycine, BDBiosciences, Poland) and CD8, CD19, CD16, and CD14 PerCP-conjugated antibodies.

Because all of the fluorescence from the cells stained with dump channel antibodies is detect by the same PMT sensor, it is possible to

gate out the remnants and dead cells in a single step. It is unlikely that this debris would make it as far as this step, because it should have

been sorted out with the immunomagnetic antibodies cocktail, the contents of which are similar to those of the dump channel cocktail.

However, in this procedure, purity is an absolute priority, and the second round of exclusion of unwanted cells improves it, as we have

confirmed in our lab. To maintain our rigorous criteria, we usually gate off around 10% of the cells from the top of dump channel, even if

the entire population appears to be alive and unstained with the dump channel antibody cocktail. Finally, the cells from P2 gate are trans-

posed to the CD127 vs. CD25 dot plot and the top 2% of the CD251 T cells, which are CD1272, are sorted. The following anti-human mono-

clonal antibodies are used in this procedure (fluorochrome, class, and clone given in the parentheses): anti-CD3 (PacificBlue or PE-Cy7,

IgG1, UCHT1), anti-CD4 (APC, IgG1, RPA-T4), anti-CD8 (PerCP IgG1, SK1), anti-CD19 (PerCP, IgG1, 4G7), CD14 (PerCP, IgG2b, MuP9), anti-
CD16 (PerCP-Cy5.5, IgG1, 3G8), anti-CD25 (FITC, IgG1, M-A251), and anti-CD127 (PE, IgG1, hIL-7R-M21). All of the antibodies were pur-

chased from BDBiosciences, Poland. Gates shown are slightly wider than those used during routine sorting to show the position and

shape of the gated subsets. (B) The upper dot plot is generated from human CD41CD31 T cells during the sorting procedure. Anti-CD127

staining during phenotyping shows that the CD41 T cells with the highest CD25 receptor expression are devoid of CD127 expression.

Moreover, reanalysis of sorted subsets, shown in the bottom dot plots, shows that more than 95% of the sorted

CD127negativeCD25highCD41CD31 T cells (P4 gate, right bottom dot plot) express FoxP3, while the majority of CD1271CD25low/negative

CD41CD31 T cells are negative for FoxP3. The anti-FoxP3 antibody (PacificBlue or FITC, IgG1, clone 236A/E7) used in our protocols comes

from eBioscience, USA.



events during sorting (Fig. 2). An obvious disadvantage of so

many gates is a substantial loss of Tregs during sorting. In our

hands, sorting from half a liter of peripheral blood taken from

a healthy blood bank donor can yield as low as 5 3 105 of

CD25highCD41CD1272 Tregs that are FoxP31, as checked af-

ter the sorting (e.g., mean from 10 sorts in our lab – 1.5 3 106

Tregs, minimum – 5 3 105 Tregs, maximum – 3.0 3 106

Tregs). Another viability problem is related to the buffers used

during FACS. The high pressure of the fluids during sorting

increases the partial pressure of CO2 in these solutions, which,

if the capacity of the buffers is inadequate, may affect the pH

(97). A more acidic pH due to the generated H2CO3 decreases

the viability of sorted cells, and some proportion (from 5% to

as high as 50%) will die within 12 h of sorting. This problem

can be minimized by carefully checking the quality of the buf-

fers. This is of special importance during aseptic sorting, in

which new sets of buffers must be used for each sort, and buf-

fers are often sterilized by increased pressure before the sort-

ing. We and others have found that using HEPES buffer and

keeping the collecting tubes at 148C improves viability (97).

It might also be possible to shorten the FACS time by starting

from a negative presort to CD41 T cells with an immunomag-

netic kit. Yet another maneuver to increase viability is to sort

Tregs directly to the culture medium. Viability also has an

impact on the suppressive activity of Tregs at a per-cell level,

which is visible when the number is corrected for dead cells

during quality-check tests. In our experience, viability below

70% after the sort is a strong indicator of poor suppressive

abilities of the sorted Tregs, and therefore such cells are not

routinely expanded.

Expansion Technique
While the purity of sorting is a necessary step towards

immunosuppression based on the adoptive transfer of Tregs, it

is only the beginning. Because the number of available Tregs is

so low, there are not enough to sort and then transfer directly

to the patient. Tregs comprise no more than 5% of total CD41

T cells (92,98,99). As we know from animal studies, such a

low number of Tregs in relation to effectors will not efficiently

suppress immune responses (68). Hence, the Treg yield must

be increased prior to administration to the patient. An

obvious obstacle achieving this goal is the terminal differentia-

tion of Tregs, which makes them difficult to proliferate (37).

Fortunately, a few efficient strategies for the large-scale expan-

sion of Tregs have been developed recently.

Large-scale Treg expansion strategies center around artifi-

cial antigen presenting cells (APC), which are actually plastic

beads coated with agonistic antibodies that will link to the sti-

mulatory receptors expressed on Tregs. The most commonly

targeted receptors are CD3 and CD28 (100). It is possible to

use soluble antibodies or culture plates coated with immobi-

lized antibodies as an alternative to bead-immobilized antibo-

dies (101). There are also reports regarding the use of CD28

superagonists in the expansion procedure (102,103). However,

this approach ended in deadlock after the catastrophe that

occurred during the first clinical trial with the CD28 superago-

nist antibody ‘‘TeGenero’’ (TGN 1412) (104). Some less-com-

mon antibody cocktails have also been suggested in the litera-

ture. Anti-CD3 together with anti-4C8 (a monoclonal anti-

body that inhibits the migration of T cells through human

endothelium) was found to generate Tregs with a contact-de-

pendent mode of suppression activity (105). The 4-1BB recep-

tor is another interesting target. Although 4-1BB has been

shown to be a negative regulator of Tregs (106), recent studies

found that ligands binding to this receptor are efficient stimu-

lators of ex vivo Treg expansion, when used together with

anti-CD3 or IL2 (107,108).

Another factor inevitable for Treg growth and prolifera-

tion is IL2. The cytokine is administered to cultures at extre-

mely high doses, equal to or higher than 1,000 UI/ml (41).

The crucial and nonredundant role of IL2 in the homeostasis

of Tregs has been highlighted by many authors (90,109–112).

In addition to being effective as a culture media supplement,

this cytokine take a part in the generation of Tregs when it is

administered to patients (113,114). Another IL2 family mem-

ber, IL15, has also been found to promote the proliferation of

Tregs ex vivo. Importantly, stimulation with IL15 allows for

manipulation of the antigenic specificity of expanded Tregs

(115,116). Altogether, stimulation via cell surface receptors

and high doses of IL2, IL15, or both can cause as high as the

1,000-fold amplification of low numbers of Tregs yielded

immediately after sorting (Figs. 3B and 3C). At least in some

circumstances, this excessive proliferation does not appear to

significantly affect Treg telomere lengths, which is of great im-

portance when a high number of cells is a priority (117). How-

ever, problems do occur during expansion. As we mentioned

previously, even a small amount of contamination with effec-

tors can result in preferential growth of these cells. Recent evi-

dence suggests that the addition to the culture of the immun-

suppressive drug rapamycin results in selective ex vivo expan-

sion of Tregs, which could be a solution (118,119).

However, even pure sorted Tregs can be problematic. It is

now known that CD25highCD41 Tregs are heterogeneous, and

that only some of them are efficient suppressors after expan-

sion. Several groups have found that Tregs in the subset char-

acterized by the expression of markers of naı̈ve cells, such as

CD45RA or CD62L, are superior to their memory counter-

parts for expansion purposes (45–47). In addition to their

less-differentiated phenotype, naı̈ve Tregs have another advan-

tage. At least some of the receptors expressed on naı̈ve cells

only are responsible for trafficking to the peripheral lymphoid

tissue. Some authors have suggested that the suppressive activ-

ity of Tregs is the highest in the environment of the peripheral

lymphoid tissue, particularly the lymph nodes (120,121). Sort-

ing of T naı̈ve cells also has the advantage of eliminating effec-

tor/memory cells. This is important, because memory cells are

known to trigger robust immune responses and undergo

homeostatic proliferation (122).

Another obstacle hampering ex vivo expansion of Tregs is

contamination with endotoxins transferred with culture media

or other reagents used during expansion. This type of contam-

ination results in high levels of proinflammatory TNFa and

IL6 cytokines in the culture, which seriously inhibit Treg func-

tion (88,123). Moreover, Tregs themselves, in the presence of
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IL6 and autocrine TGFb, can differentiate into highly proin-

flammatory Th17 cells without any suppressive activity (124).

Thus, the use of GMP products, careful surveillance of the cul-

tures, and repeated testing of the cells’ suppressive abilities

during expansion is required to ensure that the cells maintain

their suppressive activity and can be potentially administered

as a drug. This part of the expansion procedure may, at least

in part, utilize flow cytometry (125). Repetitive checking for

the expression of intracellular FoxP3 in samples of expanded

cells is probably the simplest test of suppressive quality (Fig.

2B). However, activated T effectors may also transiently

express FoxP3 (126). Furthermore, ex vivo expansion of Tregs

poses the threat of methylation of the foxp3 gene locus, which

halts transcription and abrogates the suppressive activity of

these cells (127). In animal models, high expression of FoxP3

and preserved Treg suppressive abilities depend on the

demethylation of CpG motifs in the evolutionarily conserved

region within the foxp3 gene locus upstream of exon-1, the so-

called ‘‘Treg-specific demethylated region’’ (TSDR) (128).

Importantly, nTregs are characterized by complete demethyla-

tion, while adaptive Tregs and T effector cells keep this region

partially or completely methylated, respectively (129). Because

the current view is that the stable lineage of nTregs has a con-

stitutively demethylated locus, we believe that routine mea-

surement of the level of TSDR methylation in expanded cells

would be superior to simply assessing FoxP3 expression.

Importantly, TGFb can demethylate the TSDR region, which

results in elevated expression of FoxP3. This may explain the

beneficial effects of TGFb in culture on the suppressive activity

of Tregs during expansion (130–132). Unfortunately, de-

methylation in the presence of exogenous TGFb is incomplete

and reverts when the cytokine is no longer present in the cul-

ture (129). Hence, functional tests, such as mixed lymphocyte

reactions with autologous responders in the presence of

expanded Tregs, so-called suppression assay, remain ‘‘gold

standard’’ quality checks for expanded Tregs (Fig. 3C)

(39,100).

Figure 3.

Figure 3. Ex vivo expansion of Tregs in the Laboratory of Experi-
mental Transplantology, Medical University of Gda�nsk, Poland.
(A) In our hands, the protocol proposed for the first time by Hoff-
mann et al. (41), with small modifications, yields high numbers of

Tregs with great efficiency. The flowchart outlines the procedure,

starting from sorting of the Tregs (detailed sorting procedure

described in Figure 2). Sorted CD127negativeCD25highCD41CD31

Tregs are cultured in 96-well U-bottom plates in RPMI 1640 me-

dium supplemented with 10% inactivated fetal calf serum (FCS)

(Invitrogen-Gibco, USA) and a high dose of IL2 (1,000 IU/ml, Pro-

leukin, Chiron, USA). Tregs (1 3 105 per well) are placed with anti-

CD3/CD28 beads (T Cell Expander, Invitrogen-Dynal, USA) in 1:2

ratio. One-third of the medium is replaced every two days with

new medium during the first week of expansion, and the cells are

passaged to new wells on the plate as they grow, to maintain their

number at around 1 3 105 cells per well. On day 17, the beads are
replaced with a fresh set (two beads per single cell) and the sec-

ond round of expansion begins. A small number of the expanded

cells can be used for a quality check of the culture. Because Treg

proliferation during the second round is more intense than during

the first, the medium must be replaced every day. The number of

cells increases exponentially, and therefore they should be placed

in 24- or 12-well plates (around 1 3 106 cells per ml). The second

round ends on day 114 with replacement of the beads, and sub-
sequent rounds can be performed this way every 7 days. In our

lab, up to six rounds are performed. A quality check of the cells

must be done before every round of expansion, because Tregs

tend to lose their suppressive abilities with senescence of the cul-

ture. (B) Photograph of sorted CD127negaiveCD25highCD41CD31 T
cells during expansion. The cells are cultured in the presence of a

high concentration of IL2 and plastic beads coated with anti-CD3

and anti-CD28 antibodies, known as artificial APCs (T Cell Ex-

pander, Invitrogen-Dynal, USA). Beads are visible, mixed with

proliferating cells, as dark plaques in the center of the photo. (C)
Example of a Treg expansion quality check. The suppressive abil-

ity of Tregs during expansion can be checked in the suppression

assay. This is a modified mixed lymphocyte reaction in which

PBMC or CD41 T cells autologous to Tregs are used as

‘‘effectors.’’ The effectors are mixed in different ratios with

expanded Tregs, as shown in x-axis labels, and all but the first co-
culture are stimulated with irradiated allogeneic PBMCs, which

serve as stimulators. The effectors without stimulators in the first

culture on the left and Tregs only (not shown) are important con-

trols for the quiescence of these cells. This is very important

because of the high dose of IL2 that is used during expansion.

Contamination with traces of IL2 may abolish the suppressive ac-

tivity of Tregs and activate effectors. The Tregs used for the sup-

pression assays are washed a few times with PBS and placed in

RPMI 1640 medium with 10% FCS and without IL2 for at least

2 days before the suppression assay commences. The suppres-

sion assay is incubated at 378C in 5% CO2 for five days. 3H-thymi-

dine is added for the last 16 h of the assay. The radioactivity of the

harvested cells is then measured using a liquid scintillation coun-

ter, and the quality of the Tregs is measured as the suppression of

autologous effector proliferation. The assay must be performed

with serial dilutions of expanded cells. Achieving suppression of

proliferation that correlates with the number of Tregs in particular

wells is proof that the expanded cells have kept their suppressive

abilities during expansion.
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Finally, sorted Tregs require serum in the culture me-

dium. Although highly unlikely, this could lead to problems,

because administering expanded cells grown in the presence of

allogeneic or xenogeneic serum increases the likelihood of in-

fectious disease transmission. It also presents a threat to the

patient, because exposure to serum allo- or xenoantigens

could cause an anaphylactic reaction during the first, or, more

likely, subsequent administrations of expanded Tregs. A possi-

ble solution to this problem is the use of autologous serum

from the patient during the entire expansion, although many

patients have elevated levels of proinflammatory cytokines in

their serum, which could theoretically switch Tregs to Th17

cells (133).

Ex vivo expansion provides the advantage of selective

expansion of antigen-specific Tregs, a ‘‘Holy Grail’’ of immu-

nosuppression therapy. The efficiency of antigen-directed

Tregs appears to be superior to polyclonal expansions in ani-

mal models (96,134). Some authors generated specific Tregs

by in vivo challenge with specific antigens, which selected

Tregs expressing specific TCRs (135). This could also be

achieved by pulsing Tregs with antigen immediately before

adoptive transfer; however, in this instance, selective expan-

sion occurs via bystander regulation rather than antigen-speci-

fic suppression (22). Alternatively, the antigen to be tolerated

can be presented on MHC receptors fixed to the beads used

for Tregs expansion (38). There are other variations on antigen

delivery to Tregs in animal models. The general conclusion of

these studies is that antigen-specific Tregs are more suppres-

sive than are polyclonal Tregs (136,137). Some advances in

this area were achieved in human studies. In these studies,

expanded Tregs directed against specific antigens were

obtained when these cells were incubated with the antigens

(138), or antigen presentation was performed using live allo-

APCs with or without suppressive cytokines, such as IL10 or

TGFb (34,38,139). However, we believe that the optimal

means of achieving Treg antigen specificity is to mimic nature

and apply professional presenters, such as dendritic cells

(DCs).

DCS IN IMMUNOSUPPRESSIVE THERAPY

DCs are a recently introduced ‘‘laboratory tool’’ in the

expansion of Tregs for therapeutic purposes (140). They are

effective because they can be tolerogenic themselves, are able

to induce tolerogenic Tregs (both naturally occurring and

adaptive), and can be used to direct tolerance towards specific

antigens.

DCs have long been regarded as the pivotal inducers of

strong immune responses. However, in some circumstances,

DCs may promote suppression rather than inflammation. Sev-

eral reports document experimental conditions in which mu-

rine DCs either suppress immunity or promote tolerance

through the inhibition of T cell responses to tissue auto- and

alloantigens (141). Inflammation at mucosal surfaces, such as

the gastrointestinal tract and the maternal-fetal interface, may

be also associated with the suppressive-like regulation of T cell

responses to foreign antigens (142). The maturation level of

DCs at the time of antigen presentation to T cells is important.

Immature DCs, which express low levels of MHC and costi-

mulatory molecules, are capable of inducting the apoptosis or

anergy of effector T cells in animals and humans (143–148).

Immature tolerogenic DCs present antigens to antigen-specific

T cells, but fail to deliver adequate costimulatory signals for T

cell effector activation. In addition, at least in humans, imma-

ture DCs promote the expansion of various subsets of Tregs

(147,149–151).

Some DCs may deploy specific molecular mechanisms

that allow them to limit T cell proliferation and/or modify T

cell differentiation independent of their APC maturation sta-

tus (152). Research regarding tolerogenic DCs has been per-

formed mainly with splenic DCs in mice. The interactions of

surface CD80/86 receptors on splenic DCs subsets (CD81/

CD82) with CTLA-4, which is expressed on T cells, induce the

expression of functional indoleamine 2,3-dioxygenase (IDO)

in DCs. Even small numbers of IDO1 DCs are capable of sup-

pressing T cell responses in vitro, including dominant inhibi-

tion of T cell effectors activated by antigens presented by other

nonsuppressive APCs (153). In vivo, pharmacologic activation

of the IDO pathway can completely inhibit clonal expansion

of large numbers of alloreactive T cells (142). IDO catalyzes

synthesis of kynurenines from tryptophan. Hence, its action

results in the depletion of tryptophan, an essential amino acid,

which subsequently leads to the inhibition of T cell prolifera-

tion. This mechanism was initially called ‘‘suppression by star-

vation.’’ However, kynurenines generated as a result of IDO

enzymatic activity should also be taken into account in this

mechanism. These tryptophan-derived toxic metabolites have

been found to promote T cell apoptosis. It is possible to mod-

ulate the activity of IDO, because the synthesis of this enzyme

by DCs requires IFNc and may be inhibited by IL6 secretion

(153,154). Interestingly, Tregs have been found to secrete small

amounts of IFNc, most probably during crosstalk with DCs,

with the purpose of inducing IDO expression in the DCs

(155). Importantly, IDO1 DCs directly activate resting

CD41CD251Foxp31 Tregs, and regulate the transition of na-

ı̈ve T cells to adaptive subsets of Tregs. In vivo, Tregs isolated

from tumor-draining lymph nodes (TDLNs) are constitutively

activated and capable of immediate suppression of antigen-

specific effector T cells ex vivo. In vitro, IDO1 DCs from

TDLNs rapidly activate resting Tregs from nontumor-bearing

hosts without the need for mitogens or exogenous anti-CD3

cross linking. The activation of Tregs by IDO1 DCs is MHC

restricted and can be prevented by CTLA4 blockade (156).

Emerging evidence suggests that human DCs and macro-

phages also exert suppressive activity via IDO and the kynu-

renine pathway (157–159). Both myeloid and plasmacytoid

subsets of human DCs have been found to take part in Treg

expansion (160,161). Studies on primates have revealed that

DCs are superior to monocytes in the generation of Tregs

(162). Interestingly, human Tregs also influence DCs, mainly

myeloid DCs, inhibiting their maturation through secreted

IL10 and TGFb (163,164).

Direct proof that tolerogenic DCs interact with Tregs in

antigen-specific way was provided by experiments investigat-

ing antibody-mediated targeting of autoantigens to steady-

REVIEW ARTICLE

Cytometry Part A � 75A: 175�188, 2009 183



state DCs. For this antigen delivery technique, hen egg lyso-

zyme (HEL) or ovalbumin (OVA) was covalently linked to

anti-DEC-205 antibody and injected into mice. This resulted

in loading of the lymph node DCs with the antigens and their

presentation to T cells; surprisingly, this triggered not inflam-

mation, but tolerance towards the presented antigens (165).

Further analysis revealed that anti-DEC-treated animals were

characterized by increased numbers of fully active Tregs (166).

Anti-DEC-antigen conjugates were tested in animal models of

contact hypersensitivity, diabetes, and multiple sclerosis, and

were found to be effective at relieving the symptoms of these

diseases (167). In human studies, when added to the expan-

sion culture, autologous DCs pulsed with antigens were capa-

ble of selecting Tregs with indirect allospecificity (168). This is

particularly relevant in some clinical settings, notably after

allotransplantations, when the long-term outcome depends

mainly on the indirect pathway of antigen presentation (169–

171). However, the expansion of Tregs with antigen-primed

DCs has some disadvantages. If the antigen dose during Treg

expansion is too high and the DCs are mature and activated,

these Tregs pose a threat, because of the possibility that some

effector T cells might have escaped suppression (172).

OTHER EXPANSION APPROACHES

There are a few approaches to large-scale Treg sorting and

expansion in addition to those presented above. For example,

alternative sources of Tregs have been suggested; cord blood

and bone marrow as the most enriched with Tregs

(42,173,174). However, the most interesting studies have

focused on the conversion of CD252CD41 T cells to Tregs.

This possibility was suggested for the first time by Waldmann

and coworkers, who found that suppressive capabilities can be

transferred from Tregs to naive T cells in vivo (‘‘infectious tol-

erance’’) (175). The most popular means of achieving the con-

version ex vivo utilizes exogenous TGFb, as already mentioned

(130–132). Recent evidence suggests that TGFb requires an

active Notch-dependent pathway in naı̈ve T cells for conver-

sion to occur (176–178). Human CD252CD41 T cells can be

also converted to Tregs by IL10 (179), immature subsets of

DCs (180,181), and calcitriol (vitamin D) (182). The presence

of mesenchymal stem cells in cultures of immune cells also

appears to result in increased generation of allo-specific Tregs

(183–185). Animal studies have revealed that tolerogenic T

cells can also be induced from CD252CD41 T cells after sti-

mulation with staphylococcal enterotoxins (186). Interestingly,

the herbal compounds triptolide and (5R)-5-hydroxytripto-

lide, obtained from Tripterygium wilfordii Hook, have been

reported to expand Tregs. Mice injected with these com-

pounds after bone marrow transplantation have increased

levels of Tregs (187,188).

Perspectives
Despite doubts that have arisen regarding the application,

efficiency, and sometimes even the existence of suppression

mediated by Tregs in clinical protocols (189), Treg-based

adoptive therapies will likely be an important branch of clini-

cal medicine in the foreseeable future. The need for clinically

administered expanded Tregs, rather than agents that trigger

the activity of endogenous Tregs, is even greater in light of the

notorious consequences of the clinical trial of TeGenero’s anti-

body-based drug (TGN 1412) (190). Currently, several centers

are preparing to administer expanded Tregs in clinical settings

(35,139,191). Our laboratory’s ongoing program treating

graft-versus-host disease with ex vivo-expanded Tregs has

demonstrated that the procedures presented in this article are

feasible. In our team’s hands, Treg expansion appears to be

safe; we did not observe any negative effects when expanded

Tregs were transferred back to healthy volunteers. The partici-

pants received a single transfusion of a small quantity (5 3
106 cells/transfusion) of autologous Tregs that were expanded

ex vivo. Neither the transfusion nor the post-transfusion fol-

low-up has revealed any negative effects resulting from the

procedure. This result led to the next step, administering Tregs

to GVHD patients, which is currently under way.
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